
Building occupancy management solution using the 

TensorFlow Object Detection API 

1 Introduction 

 
GreenWaves has developed a people counting solution for occupancy management in smart building systems, providing 

real-time insights into how available space is used by employees and customers. The sensor can be used for tasks such as 

meeting room or cafeteria usage optimization, desk reservations and usage based cleaning. 

 

People counting with infrared sensors offers best-in-class accuracy with total compliance to privacy-related regulations for 

indoor environments. GAP processors provide a combination of computing ability for AI and low energy operation that 

enables this type of application. 

 

As part of our development process, we needed to train an optimized neural network with a single shot detector SSD 

backend. The TensorFlow Object Detection API comes with a number of prepackaged backbone models, but we wanted 

to design something more optimized for our detection task. We aimed to 

 

● reduce memory, 

● reduce complexity, and 

● reduce power consumption 

 

In this document, we will show how we carried this out and how a custom network design can still leverage all the 

backend SSD creation offered by the TensorFlow Object Detection API. We hope this will allow you 

 

● become familiar with an object detection API like the one provided by TensorFlow. 

● learn how to modify the API with respect to your custom specifications (i.e., model structure). 

● learn how to employ the API for custom solutions such as occupancy management. 

● learn how to generate optimized code for running your solution on GreenWaves’ GAP processors. 

 

2 Object detection API 

 
Constructing, training, and deploying machine learning models for the localization and identification of multiple objects is 

a challenging task. To make this easier, we attempted to leverage the TensorFlow Object Detection API, an open source 

framework for object detection built on top of TensorFlow. The API involves a group of useful object detection 

methodologies including 

 

● Single Shot MultiBox Detector (SSD)  

● CenterNet 

● RCNN 

● EfficientDet  

● ExtremeNet 

 

 

https://link.springer.com/chapter/10.1007%2F978-3-319-46448-0_2
http://download.tensorflow.org/models/object_detection/tf2/20200711/efficientdet_d2_coco17_tpu-32.tar.gz
https://github.com/xingyizhou/ExtremeNet
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Please use these links (TensorFlow 2 Detection Model Zoo, TensorFlow 1 Detection Model Zoo) to view a full list of 

object detection methodologies supported by the API. It is clear that these solutions have different network architecture, 

training, and optimization strategies. If you are interested in finding out more, you can read this article for more details on 

different frameworks along with their advantages and disadvantages. Although these frameworks exhibit different 

characteristics, all employ deep convolutional neural networks (CNNs) to extract high-level features from the input images, 

called backbone models. In fact, it has become normal practice to employ and adapt the modern state-of-the art CNNs for 

feature extractor backbones. This can be achieved by removing the final fully connected classification layers from a CNN, 

leaving a deep neural network that can be used to extract semantic meaning from the input image without changing its 

spatial structure. 

 

The following are some useful CNN structures that can be used for backbone models of detectors: 

 

● VGGNet  

● MobileNet 

● ResNet  

● GoogleNet  

● DenseNet 

● Inception  

 

TensorFlow already provides a collection of detection models backboned to pre-trained CNNs on datasets like COCO and 

ImageNet. These models can be used for out-of-the-box inference if the target categories are already included in these 

datasets. Otherwise, they can be used to initialize the model when training on new datasets. 

 

In the rest of this article, we will focus on the SSD object detection algorithm and show you how to use the TensorFlow 

Object Detection API to develop your own detection network.  

 

2.1 Single Shot MultiBox Detector (SSD) 

 
An SSD network has two principal components: a backbone model and an SSD head. As explained earlier, the backbone 

is typically a CNN model that may be inherited from a state-of-the-art deep model trained on datasets like Imagenet and 

COCO. The SSD head consists of one or more convolutional layers added to the end of the backbone network where object 

bounding box classification takes place. The SSD head layers predict the offsets and associated confidence scores to a 

designed set of default bounding boxes of different scales and aspect ratios (Figure 1). 

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_zoo.md
https://link.springer.com/article/10.1007%2Fs11042-020-08976-6
https://cocodataset.org/#home
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Figure 1. An SSD model structure that adds several feature layers to the end of a base network that predicts the offsets to default boxes 
of different scales and aspect ratios and their associated confidences 

 

 

 

As can be seen in Table 1, TensorFlow provides various SSD heads backboned to a collection of pre-trained models to 

facilitate the training process.  
 

 

 
MODEL NAME SPEED (MS) COCO MAP 

SSD MOBILENET V1 FPN 640X640 48 29.1 

SSD MOBILENET V2 FPNLITE 320X320 22 22.2 

SSD MOBILENET V2 FPNLITE 640X640 39 28.2 

SSD RESNET50 V1 FPN 640X640 (RETINANET50) 46 34.3 

SSD RESNET50 V1 FPN 1024X1024 (RETINANET50) 87 38.3 

SSD RESNET101 V1 FPN 640X640 (RETINANET101) 57 35.6 

SSD RESNET101 V1 FPN 1024X1024 (RETINANET101) 104 39.5 

SSD RESNET152 V1 FPN 640X640 (RETINANET152) 80 35.4 

 

 
In the table, the speed refers to the running time in ms per input image, which includes all corresponding preprocessing 

and post-processing steps. It should be mentioned that the runtime values highly depend on 

hardware configuration, and these values are produced using a unique computer but are useful as a relative measure of 

latency. 

3 SSD solution deployment using the API 

 
Using pretrained models as an SSD backbone eases the training process but puts constraints on the network structure. To 

enable efficient inference on the edge, we need to train a custom CNN solution for applications such as infrared human 

detection that only require a small backbone model with a relatively restricted number of parameters.  

 

In the next section, we will show how you can modify the TensorFlow Object Detection API in order to construct any 
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custom SSD model. If you are already familiar with the theoretical concept of a Single Shot MultiBox Detector, then this 

section will provide you with a concrete example that will allow you to develop any custom SSD model using the API. 

 

3.1 API model structure 

 

All models under the TensorFlow Object Detection API must implement the DetectionModel interface; for more details, 

you can take a look at the file defining the generic base class for detection models in the API: 

 

● API: object_detection/core/model.py  

 

At a high level, detection models receive input images and predict output tensors. At training time, output tensors are 

directly passed to a specified loss function while at evaluation time, they are passed to the post processing function, which 

converts the raw outputs into actual bounding boxes. The Object Detection API follows this structure. The model you want 

to train should include the five functions below: 

 

● Preprocess applies any preprocessing operation to the input image tensor. This could include transformations 

for data augmentation or input normalization. 

● Predict produces the model’s raw predictions that are passed to the corresponding loss or post processing 

functions (e.g., Non-Maximum Suppression). 

● Postprocess converts raw prediction tensors into appropriate detection results (e.g., bounding box index and 

offset, class scores, etc.). 

● Loss defines a loss function that calculates scalar loss tensors over the provided ground truth. 

● Restore loads checkpoints into the TensorFlow graph.  

 

Depending on whether you are training or evaluating the network, a batch of input images passes through a different 

sequence of steps, as depicted in Figure 2. 

 

 

Figure 2. 

https://github.com/tensorflow/models/blob/master/research/object_detection/core/model.py
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3.2 API object detection models 

 

To allow the construction of DetectionModels for various object detection methodologies (i.e., SSD, CenterNet, RCNN, 

etc.), different meta-architectures are implemented by the TensorFlow Object Detection API. The idea behind meta-

architectures is to provide a standard way to create valid DetectionModels for each of the object detection methodologies. 

All object detection meta-architectures can be found at the following link: 

 

● API: object_detection/meta_architectures  

 

In the case of custom models, you have the option of implementing a complete DetectionModel following a specific meta-

architecture. However, instead of defining a model from scratch, it is possible to create only a feature extractor that can 

be employed by one of the pre-defined meta-architectures to construct a DetectionModel. It should be emphasized that 

meta-architectures are classes that define entire families of models using the DetectionModel abstraction. 

 

3.3 The SSD meta-architecture API  

 

Before describing the stages in the development of a custom SSD model, it is important to establish an understanding of 

the details of the SSD meta-architecture. As you can see in the example SSD model, there are three principal parts to an 

SSD model: 

 

● SSD feature maps 

● Prediction layers (i.e., classes and offsets) 

● Post processing layers 

 

When constructing your model, the Object Detection API uses a model configuration file to automatically create prediction 

and post processing layers. The configuration contains the anchor generator (e.g., aspect ratios and scales of the default 

bounding boxes), box predictors (e.g., convolution layer hyper parameters), and post processing (e.g., iou and score 

thresholds) parameter values. However, SSD feature maps are created by employing pre-constructed feature extractor 

models. The full list of SSD feature extractor models can be found at  

 

● API: object_detection/models 

 

We can choose an appropriate feature extractor model from the pre-constructed models in the configuration file (i.e., 

feature_extractor). However, this requires us to know the mappings from model names to their pre-defined structures before 

changing the configuration file. This mapping can be found at 

 

● API: object_detection/builders/model_builder.py  

 

 

 

 

 

 

https://github.com/tensorflow/models/blob/master/research/object_detection/core/model.py
https://github.com/tensorflow/models/blob/master/research/object_detection/meta_architectures/ssd_meta_arch.py
https://github.com/tensorflow/models/tree/master/research/object_detection/models
https://github.com/tensorflow/models/blob/master/research/object_detection/builders/model_builder.py


6 

Also, a number of sample configuration files are provided in the following API:  

 

● API: object_detection/configs/tf2  

 

 

 

Figure 3. A typical SSD model constructed by the API 

 

 

 

 
An SSD meta-architecture (SSDMetaArch) requires a feature extractor (SSDFeatureExtractor) to automatically construct 

appropriate class and offset prediction layers according to the configuration parameters (i.e., number of classes, scales, and 

aspect ratios). The general framework is summarized in Figure 4. 

 

 

Figure 4. SSD DetectionModel construction framework  

 

 

https://github.com/tensorflow/models/tree/master/research/object_detection/configs/tf2


7 

3.4 Custom SSD model design 

 
Now, let’s look at how we can construct a custom SSD model using API meta-architectures. While we can implement a 

custom SSD detection model from scratch, the previous sections have shown that the construction of a custom model can 

be achieved via the definition of an appropriate feature extractor model. The API will automatically create prediction and 

post processing layers using the configuration parameters. We only need to construct an SSD feature extractor through the 

SSDFeatureExtractor class. The custom feature extractor can be added to the mapping of the feature extractor in  

 

● API: object_detection/builders/model_builder.py 

 

A visual representation of all the elements of the SSDFeatureExtractor class necessary to define a valid SSD feature 

extractor is shown in Figure 5. 

 

● API: object_detection/meta_architectures/ssd_meta_arch.py 

 

 

Figure 5. A valid SSD feature extractor structure 

 

In the next section, we explain the principal components of the SSDFeatureExtractor and show how one can construct or 

adapt a feature extractor for any kind of application. 

 

 

3.4.1 Preprocess 

This defines the preprocessing operation that normalizes input images for the classification backbone. 

 
  def preprocess(self, resized_inputs): 
 """SSD preprocessing. 

  

 Maps pixel values to the range [-1, 1]. 

  

 Args: 

   resized_inputs: a [batch, height, width, channels] float tensor 

     representing a batch of images. 

  

 Returns: 

   preprocessed_inputs: a [batch, height, width, channels] float tensor 

     representing a batch of images. 

 """ 

 return (2.0 / 255.0) * resized_inputs - 1.0 

https://github.com/tensorflow/models/blob/master/research/object_detection/builders/model_builder.py
https://github.com/tensorflow/models/blob/4c514dc66dd789a607e9a8778acb86e405c88eca/research/object_detection/meta_architectures/ssd_meta_arch.py#L44
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3.4.2 Classification_backbone 

 
The classification backbone is the network structure for the extraction of basic feature maps from the preprocessed inputs. 

# input layer 

  

Input = tf.keras.layers.Input(shape=(input_shape[1], input_shape[2], input_shape[3]), batch_size = 

input_shape[0]) 

  

  

#construct a base model without any prediction/classification layers 

  

Output1 =… #a layer output with a specific layer name like ‘mp1’ 

Output2 =… #a layer output with a specific layer name like ‘mp2’ 

Output3 =… #a layer output with a specific layer name like ‘mp3’ 

  

  

# base feature maps being used by feature map generator 

Base_feature_maps = [Output1, Output2, Output3] 

  

  

self.classification_backbone = tf.keras.Model(inputs = Input, outputs = Base_feature_maps)   

 

 

3.4.3 _feature_map_layout 

 
This is a dictionary that determines which basic feature maps are being used to generate SSD feature maps by 

feature_map_generator. 

 

# Self._num_layers, self._use_dpthwise, and self._use_explicit_padding are  

# extracted from the config file. 

  

 self._feature_map_layout = { 

     'from_layer': ['mp1', 'mp2', 'mp3', ''][:self._num_layers], 

     'layer_depth': [-1, -1, -1, 256][:self._num_layers], 

     'use_depthwise': self._use_depthwise, 

     'use_explicit_padding': self._use_explicit_padding, 

 } 

In this example, the SSD model would have four prediction layers; the first three layers are provided by mp1, mp2, and 

mp3, and the API will automatically create the fourth (' ') with 256 features. Remember that the API will use your last 

feature map ('mp3') as input for the fourth one.  

  

It is very important to keep in mind that there should be a correspondence between the layers' names provided in the 

_feature_map_layout and the backbone_classification model, as the feature map generator takes those layers' outputs as its 

inputs for the construction of feature maps. 
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3.4.4 feature_map_generator 

 
 This is used to construct SSD feature maps from the features determined in the feature_map_layout. 

 
# Self._depth_multiplier, self._depth_multiplier, self._min_depth, 

# self._conv_hyperparams and self._freeze_batchnorm are extracted from the 

# config file. 

  

  

    self.feature_map_generator = ( 

     feature_map_generators.KerasMultiResolutionFeatureMaps( 

        feature_map_layout=self._feature_map_layout, 

        depth_multiplier=self._depth_multiplier, 

        min_depth=self._min_depth, 

        insert_1x1_conv=True, 

        is_training=self._is_training, 

        conv_hyperparams=self._conv_hyperparams, 

        freeze_batchnorm=self._freeze_batchnorm, 

        name='FeatureMaps')) 

 

 
The feature map generator has a function in its API to create feature maps automatically so there is no need for further 

coding. 

3.4.5 Feature maps 

  
SSD feature maps are created for each input image as shown below: 

 
'Step1) pass preprocessed input to the classification backbone' 

 image_features = self.classification_backbone( 

     ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple)) 

  

  

 'Step2) construct feature maps from image features.' 

 feature_maps = self.feature_map_generator({ 

     'mp_1': image_features[0], 

     'mp_2': image_features[1], 

     'mp_3': image_features[2], 

     'mp_4': image_features[3]}) 

  

3.5    Custom model embedding 

Following the implementation of the instructions in Section 4 and the construction of a custom SSD feature extractor 

(e.g., ssd_custome_keras_feature_extractor.py), first, we have to ensure that the file has been added to the API models 

folder at 

 ·       API: object_detection/models 

 Second, this custom feature extractor can be added to the mapping in which all feature extractor definitions are provided, 

and we can access them within the pipeline configuration file using their corresponding keys. To do this, open the API 

model builder at API: object_detection/builders/model_builder.py and add following lines: 

https://github.com/tensorflow/models/tree/master/research/object_detection/models
https://github.com/tensorflow/models/blob/master/research/object_detection/builders/model_builder.py
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 from object_detection.models.ssd_custome_keras_feature_extractor import 
SSDMCustomKerasFeatureExtractor 

  

"""for models created using keras API""" 

SSD_KERAS_FEATURE_EXTRACTOR_CLASS_MAP = { 

 ... 

  

 'ssd_custom': SSDMCustomKerasFeatureExtractor, 

  

 ... 

 } 

3.6 API installation 

 
After applying all modifications related to the custom model design, follow the normal steps for the installation of the 

API provided on the TensorFlow website. After the installation of the API, the custom SSD feature extractor can be 

accessed within the configuration file: 

 
model { 

  ssd { 

 inplace_batchnorm_update: boolean 

 freeze_batchnorm: boolean 

 num_classes: int 

 box_coder {...bounding boxes coder parameters...} 

 matcher {...argmax matcher parameters...} 

 similarity_calculator {...similarity measure and its corresponding parames...} 

 encode_background_as_zeros: true                                                          

  

 anchor_generator {...SSD anchor generator parameters like aspect ratio, etc...} 

 image_resizer {... image resizer...} 

 box_predictor {... predictor heads parameters ...} 

   feature_extractor { type: 'ssd_custom', and other info} 

 loss { ...model loss functions...} 

 post_processing {...postprocessing parameters} 

} 

 

4 Occupancy management data preparation 

 
Some infrared images used for training the human detection model are shown in Figure 6. Images are acquired by various 

sensors installed at different locations and heights. It should be noted that some acquisitions are blurry due to bad focus 

adjustment after sensor installation. It would be better to adjust focus according to the sensor height, but our model will 

learn to work around this.  

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2.md
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Figure 6. Infrared images of humans at various locations 

 

4.1 Annotations 

 
Human annotations are provided in the Pandas DataFrame structure exported to csv files, which include image filenames 

and their corresponding bounding boxes. An example of this information is provided in the table below. 

  
image_name xmin xmax ymin  ymax class_id 
acqui3_imag_10179.png 16 37 54 77 1 
acqui3_imag_3723.png 12 33 4 31 1 
acqui3_imag_3723.png 59 79 48 71 1 
acqui2_image_1509.png 48 66 64 78 1 
acqui2_image_1509.png 61 73 60 73 1 
acqui2_image_1509.png 50 62 31 45 1 
acqui2_image_1509.png 14 32 38 50 1 
acqui2_image_1509.png 54 70 15 30 1 
acqui2_image_1509.png 17 31 14 29 1 
acqui2_image_1509.png 36 47 3 13 1 
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In Figure 7, for each input image, corresponding ground truth bounding boxes are drawn where humans are present in the 

frames. 

 

 

Figure 7. Ground truth bounding boxes are drawn around corresponding images 

 

4.2 API data preparation 

 

The id of the classes start from 1, and the class id of 0 is reserved for the background context. In the human detection 

model, the labels map is as follows: 

item { 

  id: 1 

  name: 'human' 

} 

In summary, the corresponding tf_example for each image in the dataset is created and stored in the dataset’s TFRecord 

file (Figure 8).  

 

Figure 8. TFRecord file generation 

5. Summary 

In this document, we provided an overview on how to train and optimize a neural network for occupancy management 

applications, leveraging all the backend SSD offered by the TensorFlow Object Detection API. 

 

To enable easy porting of custom NNs on GAP, we have developed GAPflow, a set of tools released by GreenWaves 

Technologies that allows users to accelerate the deployment of NNs on GAP while ensuring high performance of and 

low-energy consumption on GAP processors. The GAPflow toolset assists programmers in achieving short time-to-

prototype of DL-based applications by generating GAP-optimized code based on the provided DL model, and it fully 

supports the importation of detection models created using the Tensorflow Object Detection API. Watch our tutorial 

here. 

https://greenwaves-technologies.com/gapflow/

